Pytorch学习系列(3):Logistic Regression(逻辑斯蒂回归)
导包
# 包
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
超参数设置
# 超参数设置 Hyper-parameters
input_size = 784
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001
MINIST 数据集加载(image and labels)
train_dataset = torchvision.datasets.MNIST(root='./data/minist',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = torchvision.datasets.MNIST(root='./data/minist',
train=False,
transform=transforms.ToTensor())
# 数据加载器(data loader)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
Logistic Regression 模型:加载和训练
# 线性模型,指定
model = nn.Linear(input_size, num_classes)
# 损失函数和优化器
# nn.CrossEntropyLoss()内部集成了softmax函数
# It is useful when training a classification problem with `C` classes.
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
# 训练模型
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# 将图像序列抓换至大小为 (batch_size, input_size)
images = images.reshape(-1, 28*28)
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
# 反向传播及优化
optimizer.zero_grad() # 注意每次循环都要注意清空梯度缓存
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
Epoch [1/5], Step [100/600], Loss: 2.2353
Epoch [1/5], Step [200/600], Loss: 2.1083
Epoch [1/5], Step [300/600], Loss: 2.0297
Epoch [1/5], Step [400/600], Loss: 1.8900
Epoch [1/5], Step [500/600], Loss: 1.8721
Epoch [1/5], Step [600/600], Loss: 1.8163
Epoch [2/5], Step [100/600], Loss: 1.7264
Epoch [2/5], Step [200/600], Loss: 1.6583
Epoch [2/5], Step [300/600], Loss: 1.4778
Epoch [2/5], Step [400/600], Loss: 1.5797
Epoch [2/5], Step [500/600], Loss: 1.4532
Epoch [2/5], Step [600/600], Loss: 1.5043
Epoch [3/5], Step [100/600], Loss: 1.3956
Epoch [3/5], Step [200/600], Loss: 1.4578
Epoch [3/5], Step [300/600], Loss: 1.3631
Epoch [3/5], Step [400/600], Loss: 1.2650
Epoch [3/5], Step [500/600], Loss: 1.3099
Epoch [3/5], Step [600/600], Loss: 1.2658
Epoch [4/5], Step [100/600], Loss: 1.1999
Epoch [4/5], Step [200/600], Loss: 1.1436
Epoch [4/5], Step [300/600], Loss: 1.3497
Epoch [4/5], Step [400/600], Loss: 1.1313
Epoch [4/5], Step [500/600], Loss: 1.0994
Epoch [4/5], Step [600/600], Loss: 1.0709
Epoch [5/5], Step [100/600], Loss: 0.9945
Epoch [5/5], Step [200/600], Loss: 0.9972
Epoch [5/5], Step [300/600], Loss: 1.1719
Epoch [5/5], Step [400/600], Loss: 1.0479
Epoch [5/5], Step [500/600], Loss: 1.1119
Epoch [5/5], Step [600/600], Loss: 0.9265
测试模型
# 在测试阶段,为了运行内存效率,就不需要计算梯度了
# PyTorch 默认每一次前向传播都会计算梯度
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.reshape(-1, 28*28)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
Accuracy of the model on the 10000 test images: 82 %
保存模型
## 保存模型
torch.save(model.state_dict(), 'model.ckpt')